Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Commun Biol ; 5(1): 1202, 2022 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-36352173

RESUMO

Structural investigations of amyloid fibrils often rely on heterologous bacterial overexpression of the protein of interest. Due to their inherent hydrophobicity and tendency to aggregate as inclusion bodies, many amyloid proteins are challenging to express in bacterial systems. Cell-free protein expression is a promising alternative to classical bacterial expression to produce hydrophobic proteins and introduce NMR-active isotopes that can improve and speed up the NMR analysis. Here we implement the cell-free synthesis of the functional amyloid prion HET-s(218-289). We present an interesting case where HET-s(218-289) directly assembles into infectious fibril in the cell-free expression mixture without the requirement of denaturation procedures and purification. By introducing tailored 13C and 15N isotopes or CF3 and 13CH2F labels at strategic amino-acid positions, we demonstrate that cell-free synthesized amyloid fibrils are readily amenable to high-resolution magic-angle spinning NMR at sub-milligram quantity.


Assuntos
Amiloide , Príons , Amiloide/química , Espectroscopia de Ressonância Magnética/métodos , Proteínas Amiloidogênicas , Imageamento por Ressonância Magnética
2.
Methods Mol Biol ; 1635: 57-90, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28755364

RESUMO

Small hydrophobic membrane proteins or proteins with hydrophobic domains are often difficult to produce in bacteria. The cell-free expression system was found to be a very good alternative for the expression of small hydrophobic subunits of the yeast ATP-synthase, such as subunits e, g, k, i, f and the membrane domain of subunit 4, proteins that are suspected to play a role in the stability of ATP-synthase dimers. All of these proteins could be produced in milligrams amounts using the cell-free "precipitate mode" and were successfully solubilized in the presence of lysolipid 1-myristoyl-2-hydroxy-sn-glycero-3-phospho-1'-rac-glycerol. Purified proteins were also found suitable for structural investigations. An example is given with the NMR backbone assignment of the isotopically labeled subunit g. Protocols are also described for raising specific polyclonal antibodies against overexpressed cell-free proteins.


Assuntos
ATPases Mitocondriais Próton-Translocadoras/metabolismo , Subunidades Proteicas/metabolismo , Saccharomyces cerevisiae/enzimologia , Sistema Livre de Células , Expressão Gênica , Interações Hidrofóbicas e Hidrofílicas , Espectroscopia de Ressonância Magnética , ATPases Mitocondriais Próton-Translocadoras/química , Domínios Proteicos , Multimerização Proteica , Estabilidade Proteica , Subunidades Proteicas/química , Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo
3.
Bioorg Med Chem Lett ; 22(8): 2973-5, 2012 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-22425567

RESUMO

Atractyloside (ATR) was characterized in 1868 and until now structural studies on diterpenic moiety had been done through the characterization of ATR derivatives; while the glycosidic moiety seemed to be a ß-D-glucopyranose a recent crystal structure of the mitochondrial ATP/ADP carrier in complex with CATR showed an α-D-glucopyranose. We decided to re-examine the ATR and CATR structures by crystallographic study of ATR.


Assuntos
Atractilosídeo/análogos & derivados , Atractilosídeo/química , Modelos Moleculares , Cristalografia por Raios X , Complexos Multiproteicos/química
4.
J Struct Biol ; 177(2): 490-7, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22119846

RESUMO

The F(1)F(O)-ATP synthase is a rotary molecular nanomotor. F(1) is a chemical motor driven by ATP hydrolysis while F(O) is an electrical motor driven by the proton flow. The two stepping motors are mechanically coupled through a common rotary shaft. Up to now, the three available crystal structures of the F(1)c(10) sub-complex of the yeast F(1)F(O)-ATP synthase were isomorphous and then named yF(1)c(10)(I). In this crystal form, significant interactions of the c(10)-ring with the F(1)-head of neighboring molecules affected the overall conformation of the F(1)-c-ring complex. The symmetry axis of the F(1)-head and the inertia axis of the c-ring were tilted near the interface between the F(1)-central stalk and the c-ring rotor, resulting in an unbalanced machine. We have solved a new crystal form of the F(1)c(10) complex, named yF(1)c(10)(II), inhibited by adenylyl-imidodiphosphate (AMP-PNP) and dicyclohexylcarbodiimide (DCCD), at 6.5Å resolution in which the crystal packing has a weaker influence over the conformation of the F(1)-c-ring complex. yF(1)c(10)(II) provides a model of a more efficient generator. yF(1)c(10)(II) and bovine bF(1)c(8) structures share a common rotor architecture with the inertia center of the F(1)-stator close to the rotor axis.


Assuntos
ATPases Translocadoras de Prótons/química , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/enzimologia , Animais , Bovinos , Cristalografia por Raios X , Modelos Moleculares , Estrutura Quaternária de Proteína , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Homologia Estrutural de Proteína , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...